Neuroanatomical analysis of the BTBR mouse model of autism using magnetic resonance imaging and diffusion tensor imaging
نویسندگان
چکیده
Autism is a neurodevelopmental disorder characterized by abnormal reciprocal social interactions, communication deficits, and repetitive behaviors with restricted interests. Autism-relevant phenotypes in the inbred mouse strain BTBR T+tf/J (BTBR) offer translational tools to discover biological mechanisms underlying unusual mouse behaviors analogous to symptoms of autism. Two of the most consistent findings with BTBR are lack of sociability as measured by the three-chamber social approach task and increased amount of time engaged in self-grooming in an empty cage. Here we evaluated BTBR as compared to two typical inbred strains with high sociability and low self-grooming, C57BL/6J (B6) and FVB/AntJ (FVB), on both the automated three-chambered social approach task and repetitive self-grooming assays. Brains from the behaviorally tested mice were analyzed using magnetic resonance imaging and diffusion tensor imaging to investigate potential neuroanatomical abnormalities throughout the brain; specifically, to discover neuroanatomical mechanisms which could explain the autism-relevant behavioral abnormalities. Significant differences in volume and white matter microstructure were detected in multiple anatomical regions throughout the brain of BTBR compared to B6 and FVB. Further, significant correlations were found between behavioral measures and areas of the brain known to be associated with those behaviors. For example, striatal volume was strongly correlated to time spent in self-grooming across strains. Our findings suggest that neuropathology exists in BTBR beyond the previously reported white matter abnormalities in the corpus callosum and hippocampal commissure and that these brain differences may be related to the behavioral abnormalities seen in BTBR.
منابع مشابه
Neuroimaging Evidence of Major Morpho-Anatomical and Functional Abnormalities in the BTBR T+TF/J Mouse Model of Autism
BTBR T+tf/J (BTBR) mice display prominent behavioural deficits analogous to the defining symptoms of autism, a feature that has prompted a widespread use of the model in preclinical autism research. Because neuro-behavioural traits are described with respect to reference populations, multiple investigators have examined and described the behaviour of BTBR mice against that exhibited by C57BL/6J...
متن کاملEvaluation of White Matter Tracts in Autistic Individuals: A Review of Diffusion Tensor Imaging Studies
Introduction: Many cognitive and social deficits in autism are caused by abnormal functional connections between brain networks, which are manifested by impaired integrity of white matter tracts. White matter tracts are like the "highways" of the brain, which allow fast and efficient communication in different areas of the brain. The purpose of this article is to review the results of autism st...
متن کاملBrain Structural Changes Caused by Autism Spectrum Disorder Based on Volumetric Analysis of Magnetic Resonance Images: A Review Study
Background and purpose: Autism spectrum disorder (ASD) is a psychiatric disorder which occurs in early years of life and causes various individual and social problems. Early detection of autism would help in taking necessary precautions and preventing its adverse side effects. Methods & Materials: In this paper, we reviewed the articles that have investigated brain structural changes caused by...
متن کاملDynamic Contrast Magnetic Resonance Imaging (DCE-MRI) and Diffusion Weighted MR Imaging (DWI) for Differentiation between Benign and Malignant Salivary Gland Tumors
Background: Salivary gland tumors form nearly 3% of head and neck tumors. Due to their large histological variety and vicinity to facial nerves, pre-operative diagnosis and differentiation of benign and malignant parotid tumors are a major challenge for radiologists. Objective: The majority of these tumors are benign; however, sometimes they tend to transform into a malignant form. Functional M...
متن کاملImage contrast using the secondary and tertiary eigenvectors in diffusion tensor imaging.
Diffusion tensor imaging (DTI) is a new imaging modality that can provide unique information on brain white matter anatomy. Measurements of water diffusion constant along multiple axes are fitted to a tensor model, from which the diffusion anisotropy and dominant fiber orientation can be estimated. Even though the tensor model is an oversimplification of the underlying neuroanatomy, information...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- NeuroImage
دوره 70 شماره
صفحات -
تاریخ انتشار 2013